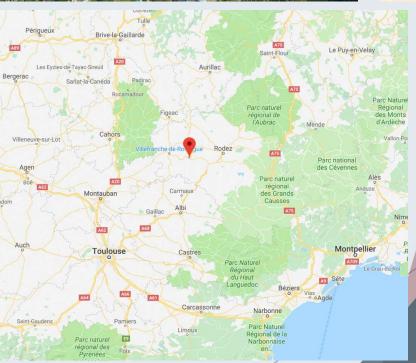
Equilibres alimentaires des vaches allaitantes


Principaux repères théoriques, outils diagnostiques de terrain et de laboratoire pour les vétérinaires ruraux

GDS de la Creuse GUERET, le 10 octobre 2019 Fabien LAGOUTTE - 12240 RIEUPEYROUX

Présentations

Fabien LAGOUTTE (T 2009) 12240 RIEUPEYROUX - 6 Vétos

Mixte avec 70 % de Rurale BV (2/3 allaitant, Veau d'Aveyron)

Analyses de fourrages (IR), rations (allaitantes / laitières), audits (attentes des éleveurs), Analyses urinaires et sanguines

fabien.lagoutte@vetoccitan.fr

Quand suspecter un déséquilibre alimentaire?

- Toute anomalie des bouses (fibres, grains, diarrhée...)
- Amaigrissement (gras, muscle!)
- DIARRHEES NEONATALES !!!
- Omphalites,
- pathologie respiratoire < 3 mois
- Troubles de la reproduction, boiteries

→ Tout le temps !? (mais est-ce surprenant ?) :
 Médecine de troupeau : Approche ALARME
 (Animaux / Logement / ALIMENTATION / Régie / Microbisme / Eleveur)

Préambule (rappels de physiologie)

Il existe de multiples manières d'aborder l'alimentation des vaches

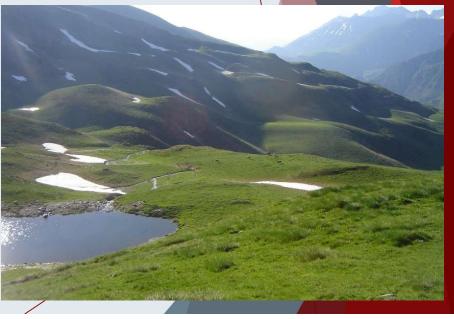
Mimétisme / Empirisme / Expérience / Observation

► Calculs complexes, savants, précis ... ou pas

► Pesée des aliments ... ou pas

► Analyse des aliments ... ou pas

► Fourche, Dérouleuse, Désileuse, Mélangeuse ...


➤ → Comment s'y retrouver?

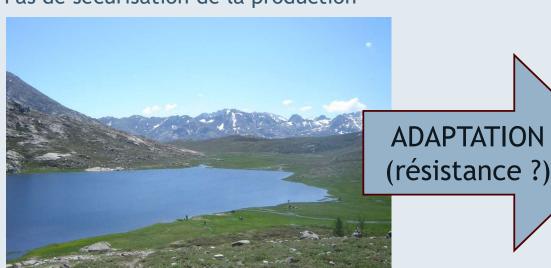
La vache dans son milieu naturel : la référence

- Prise alimentaire :
 - Hauteur de coupe, préférences, tri et choix
 - Nature des aliments = HERBE uniquement
 - Déplacements, activité physique, effet troupeau
- Mastication et rumination
- Digestion du bol alimentaire
 - Dégradations / Fermentations (C/N/H)
 - Assimilation / Recyclage / Rejets
- Abreuvement (H/O) Respiration (O)

La vache dans son milieu naturel : la référence

Composition de l'herbe :

- Azote (protéines, azote soluble)
- Carbone, Hydrogène (sucres solubles, glucides pariétaux, MG)
- Eau
- Minéraux

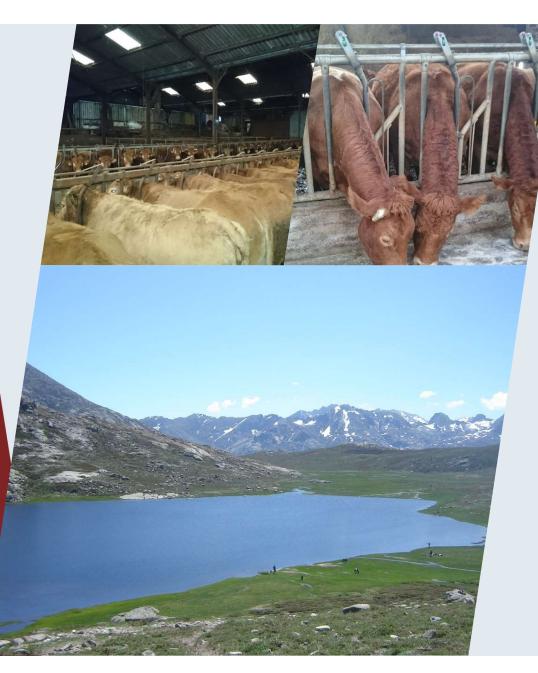

	Prairie Naturelle Auvergne	Prairie naturell e Plaine
UFL	1,03	1,02
Cellulose	22,4	24,4
Digestibili té	78 %	77 %
MAT	16-18 %	17-18 %
PDI	96	95
Calcium	5,1	6
Phosphore	2,7	4

Physiologie digestive des vaches

- En 'conditions naturelles'
- Tri, choix
- Digestibilité maximale
- Equilibre des nutriments (ou pas ...)
- Accès à l'eau limité en durée mais pas en quantité
- Environnement et rythmes choisi
- Mais: stocks incertains!
- Pas de sécurisation de la production

► En conditions d'élevage

- Choix limité, tri évité
 - Digestibilité réduite
- Déséquilibre des nutriments (ou pas ...)
- Durée d'accès à l'eau OK (ou pas), mais quantité parfois limitante
 - Environnement et rythmes imposés
 - Production plus sécurisée

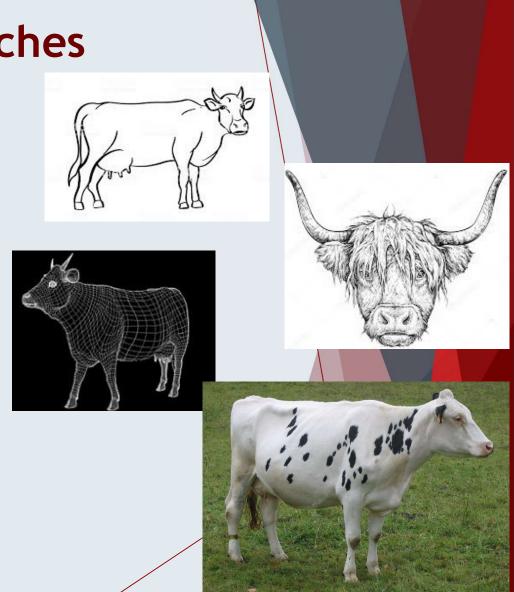


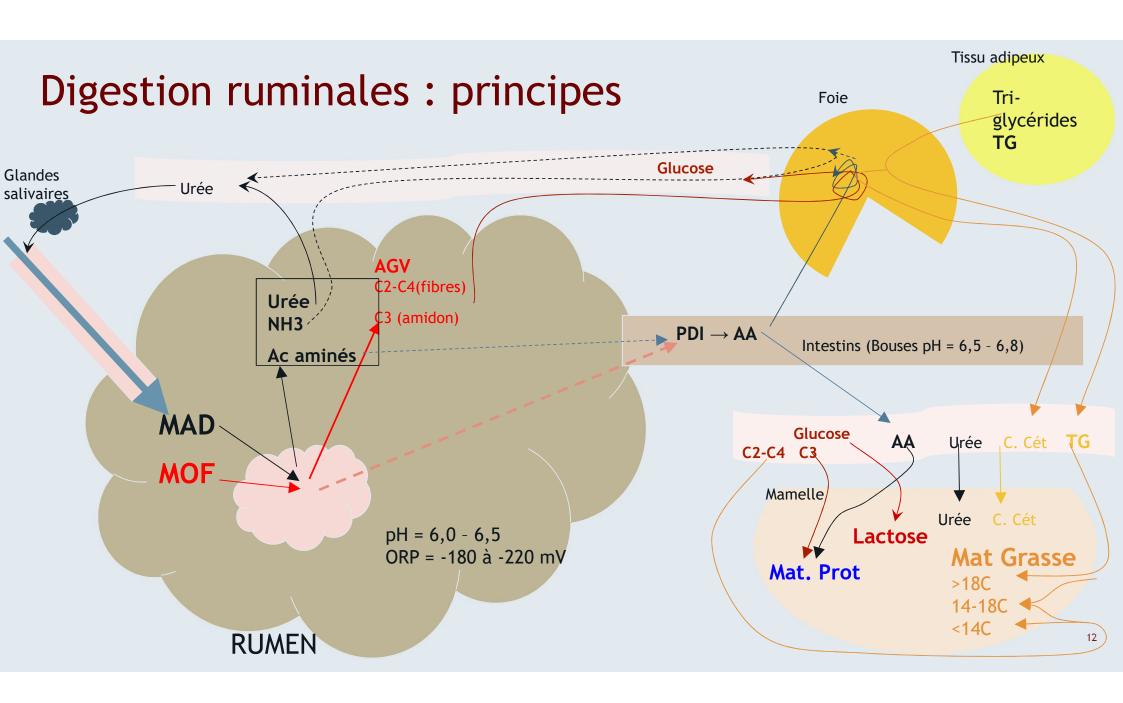
Physiologie alimentaire/digestive des vaches

- ► Avoir conscience que les choix faits par l'éleveur (organisation, temps de travail) ne sont pas forcément ceux « qu'auraient fait » les bovins (instinct, besoins,...)
 - ► Exemples : 1 seul fourrage ; maïs + paille + tourteau ; absence de foin ; abreuvement 1 pipette/14 BV ...

Ces choix ont des conséquences sur la digestion et la valorisation alimentaire.

2^{ème} partie: besoins théoriques


Besoins alimentaires : repères


Alimentation minérale

Zoom sur la preparation au vêlage

Besoins alimentaires des vaches et des veaux

- Logiciels de calculs de ration = modélisation par des équations des digestions / assimilations / équilibres des vaches
- → outils performants mais forcément limités car modélisation ≠ réalité
- > constante evolution des modèles

Besoins alimentaires des vaches : principes

- Besoins d'entretien :
 - ₹ Besoins énergétiques, protéiques, minéraux (ex : BesUFL Limousine 600 kg : environ 5 UFL)
- Besoins de production : croissance / gestation / lait produit
 - ▼ Besoins énergétiques, protéiques,
 - 🔻 par kg de lait produit : 0,45 UFL / 53 gPDI / 1,25 g Calcium absorbé
 - Limousine 8 kg de lait : 3,6 UFL / 424gPDI / 10 gCa abs
 - ₹ Montbéliarde 20 kg : 9 UFL / 1060 gPDI / 25 gCa abs
- Capacité d'ingestion : fonction des poids, race, strade physiologique

Origine des composants du lait (1)

- 1. Quantité de lait : apports azotés et énergétiques (PDI et UFL)
- 2. Sucres: Lactose: origine = glucose sanguin
- 3. Minéraux : Calcium, Phosphore, Magnésium sanguins
 - → plus de Ca dans 10L de colostrum (vache laitière) que dans le sang
 - → taux Ca du lait est fixe, si manque de Ca sanguin, baisse de lait
 - → Magnésium du lait suit le Mg sanguin

Origine des composants du lait (2)

4. Matières grasses (TB)

- a. Acides gras >18C (40%):
 Triglycérides circulants sanguins (lipomobilisation → ++)
- b. Acides gras <14C (20%): Synthèse mammaire à partir C2 et C4 (flore ruminale cellulolytique) (acidose →)
- c. Acides gras 14-18C (40 %):
 Origine mixte C2-C4 et
 Triglycérides

5. Matières azotées

- a. Protéines (TP : caséine=80% ; prot. lactosérum=20%) :
 - i. synthèse mammaire à 95 %
 - ii. à partir d'acides aminés sanguins (origine PDI, méthionine limitante) et glucose
 - iii. déficit PDI \rightarrow ; déficit énergétique \rightarrow ; acidose \rightarrow + (C3 \rightarrow glucose)
- b. Azote Non Protéique (urée, augmente si apports azotés augmentent)

Besoins alimentaires des veaux

- ?????? données de référence très rares !!!!!! mais a-t-on vraiment le choix en VSLM ?
- Indice croissance: 1,8 à 2,5 (UFL/kgGMQ) → environ 2 UFL/kgGMQ (3000kCal/kgGMQ)
- Entretien: 50 kCal/kgPV/j
- Lait contient : environ 5500 kCal/kgMS \rightarrow 825 kcal/L (env. 150 gMS/L) ; VSLM TB 37-38 / TP 34-35
 - Veau naissant 40 kg + GMQ 1000-1200 <=> 6 à 7 L lait
 - Veau 120 kg PV, 1200gGMQ <=> 12 L lait

Besoins des vaches : quelques valeurs repères

Besoins Totaux	Limousine 600 kg 1 mois lactation	Limousine 600 kg 3 mois lactation	Limousine 600 kg Fin gestation	Objectif valeurs des fourrages
Capacité ingestion	12,5 UEB (11,5 kgMS)	13 UEB (12 kgMS)	10,5 UEB (9,5-10 kgMS)	
UFL	10 (0,87 /kgMS)	9,5 (0,79 /kgMS)	8,4 (0,84-0,88)	0,7-0,8 UFL/kgMS (dMO >72% ensilages 60-65% Foins)
PDI	874 (76 g/kgMS)	821 (68 g/kgMS)	637 (70 g/kgMS)	12-13% MAT 70-80 gPDI
Ca	76 (6,5 g/kgMS)	78,6 (6,5 g/kgMS)	46 (5 g/kgMS)	6 - 7 g/kgMS
Phos	41 (3,5 g/kgMS)	42,3 (3,5 g/kgMS)	24 (2,5 g/kgMS)	3 - 3,5 g/kgMS
Mg	22 (1,9 g/kgMS)	23 (1,9 g/kgMS)	26 (2,7 g/kgMS)	2 - 2,5 g/kgMS

Besoins minéraux des vaches allaitantes

Calcium

- Calcium absorbé = 40 à 60 % du Ca total
- Entretien: besoin Ca abs. = 0,008xPV + 0,663xMSI
- Production : besoin Ca absorbé = 1,25 g/kg lait produit
- Simplification: Ca total = 6 à 6,5
 g/kg MSI (6 à 7 en fin de gestation)
- Besoins des veaux : BesCaabs = (0,015xPV) + (9,83xPVad^0,22xPV^-0,22xGMQ)

Phosphore

- Phosphore absorbé = 60 à 70 % du P total
 - ▶ Diminue si excès ou déficit fort!
- ► Entretien : BesPabs = $(0.83 \times MSI) + (0.002 \times PV)$
- ► Gestation: 2g/j à 6 mois → 5g/j à 9mois
- Production : besoin Pabs = 0,9 g/kg lait produit
- ► Simplification: 3 à 3,5 g/kg MSI
- Besoins des veaux BesPabs = (0,83xMSI) + (0,002xPV) + [1,2 + (4,655xPVad^0,22xPV^-0,22)] xGMQ

Fourrages
courants:
teneurs très
variables: herbe
au stade et sur
bon sol
théoriquement
OK

- MoyenneEH/Enr : Ca =6,8 / P = 2,98
- Moyenne Foin: Ca = 7,3 / P= 2,3
- Moyenne
 Emaïs : Ca =
 1,5 / P = 1,9

Besoins minéraux des vaches allaitantes

Magnésium

- Besoins Magnésium =
 - ► 2 à 2,5 g/kg MSI en lactation
 - ➤ 2,5 à 3,5 g/kg MSI en fin de gestation
 - \rightarrow 25 30 g par jour
- ► Fourrages: le plus souvent < 2g/kgMS!!!
 (Maïs = 1,3 / Herbe = 1,7)

Soufre

- Besoins Soufre =
 - ▶ 2 g/kg MSI en lactation
 - 2,5 g/kg MSI en fin de gestation (BACA)
 - \rightarrow 20 25 g par jour
- ► Fourrages: 1,5 2,5 g/kgMS (très variable)

Chlore

- **▶** Besoins:
 - ▶ 4 à 6 g/ kgMSI

Besoins minéraux des vaches allaitantes

Sodium

- **▶** Besoins:
 - ▶ 1,5 à 2 g/ kgMSI en lactation
 - < 1,5 g/kgMSI en fin de gestation (BACA)
- Moyenne Herbes = 0,7 / Maïs = 0,05
- ➤ Soit besoins de 15-20g/j, apports fourrages de 10 g maxi!
- → comment se passer de sel ?
 - ► <u>Sel</u> = 40% de Na → <u>minimum</u> <u>25g/jour</u>

Potassium

- Besoins:
 - ▶ 13 15 g/ kgMSI en lactation
 - < 13 g/kgMSI en fin de gestation (BACA)</p>
- \blacktriangleright Foins: 20-25 g/kgMS (moy = 19,5)
- Enrub/ensilages > 25 g/kgMS (moy = 26)
- ► Ensilage Maïs < 9-10 (moy = 7)
- ► Interactions avec Mg:
 - ▶ Veiller à K/Mg < 10-15

Fer

- Besoins:
 - ▶ 15 mg/ kgMSI
- Moy. Ensil/Enrub Herbes = 320 !
- ► Moy. foins = 250-280
- ► Moy. Maïs = 55
- ► Si contamination par terre : > 1 000 !
- Signe de dysfonctionnement sol si > 350
- ▶ PENSER AUX FOURRAGES !!!

- ► Augmentation apports vache → peu de variations dans le lait
- ▶ Veau nait avec un stock +/- important
 - Ce stock va déterminer le risque ultérieur
 d'anémie : importance des apports en gestation
 - Concentration Hgb/100 mL de globules 28-29g
 - Mais diminution taille hématies
- ► Environ 10 L par kg de gain de poids
 - ► → 800 1000L par veau
 - ▶ 0,6 mg/L → environ 600 mg/veau par le lait
 - ► Si lait reconstitué : effet de l'eau
- Anémie :
 - ► Anémie physiologique du nourrisson
 - ► Attention Cuivre, Cobalt, Sélénium²¹!

Cuivre

- ▶ Besoins: 10-15 mg/kgMSI
- ► Toxicité si > 30
- ► Fourrages en général < 7-8
- Interactions Cobalt, Molybdène, Fer, Sulfate

Zinc

- ► Besoins: 50 75 mg/kgMSI
- ► Toxicité si > 250
- ► Fourrages moy = 20 mg/kgMS

Tableau 2. Apports recommandés et seuils de carence et de toxicité pour les principaux oligo-éléments (en mg/kg MS dans la ration).

	Seuil de carence mg/kg MS	Apports recommandés mg/kg MS	Seuil de toxicité mg/kg MS
Cu	7	8-10	30
Zn	45	50-75	250
Mn	45	50-75	1 000
I	0,15	0,2 - 0,8	8
Se	0,1	0,1	0,5

Manganèse

Besoins: 50 - 75 mg/kgMSI

► Toxicité si > 1 000

► Fourrages très variables ; moy = 95

Cobalt

► Fourrages : rarement dosé

Tableau 2. Apports recommandés et seuils de carence et de toxicité pour les principaux oligo-éléments (en mg/kg MS dans la ration).

	Seuil de carence mg/kg MS	Apports recommandés mg/kg MS	Seuil de toxicité mg/kg MS
Cu	7	8-10	30
Zn	45	50-75	250
Mn	45	50-75	1 000
I	0,15	0,2 - 0,8	8
Se	0,1	0,1	0,5

Sélénium

► Besoins: 0,1 mg/kgMS

Fourrages : rarement dosé

► Le plus fréquemment : carencés

lode

► Besoins: 0,2 à 0,8 mg/kgMS

► Fourrages : rarement dosé

Tableau 2. Apports recommandés et seuils de carence et de toxicité pour les principaux oligo-éléments (en mg/kg MS dans la ration).

	Seuil de carence mg/kg MS	Apports recommandés mg/kg MS	Seuil de toxicité mg/kg MS
Cu	7	8-10	30
Zn	45	50-75	250
Mn	45	50-75	1 000
I	0,15	0,2 - 0,8	8
Se	0,1	0,1	0,5

Besoins des vaches allaitantes en vitamines

Vitamine A

- ► Entretien : 10 000 UI / 100 kg de PV
- Production
 - + 1 000 UI / L
 - ► Fin gestation: + 100 000 UI
- ► → Lactation 10 L lait = 70 000 UI
- ➤ → Fin gestation 160 000 UI
- ► Fourrages :
 - pâturage OK
 - ► Ensilages, foins vieux ou mauvais = 0
 - ► Foin OK si bon et < 4 mois
 - ► Concentrés / racines / tubercules = 0

Vitamine D3

- ► Entretien: 1 000 UI / 100 kg de PV
- Production
 - + 100 UI / L
 - ► Fin gestation: + 10 000 UI
- ► → Lactation 10 L lait = 7 000 UI
- ➤ → Fin gestation 16 000 UI
- ► Fourrages:
 - pâturage OK
 - ► Fourrages : composition mal connue
 - ► Concentrés / racines / tubercules = 0

Besoins des vaches allaitantes en vitamines

Vitamine E

- Entretien: 30 UI / 100 kg de PV
- Production
 - + 3 UI / L
 - ► Fin gestation : + 0 UI
- ► → Lactation 10 L lait = 210 UI
- ► → Fin gestation 180 UI
- Fourrages :
 - ▶ pâturage OK, teneurs élevées en vert
 - ► Ration hivernale ne couvre pas si pas d'AMV
 - Fourrages conservés, très faibles teneurs, variables

Vitamines B et Vitamine K

- ▶ Produites par les microorganismes de la panse
- Apports supplémentaires non nécessaires (sauf si l'on néglige la flore ruminale!)
- ► Cas des veaux : le lait est riche en vitamine B
 - → pas de carence si veau nourri au lait en quantité suffisante
 - Possibilité de carences lors de transitions alimentaires avec panse non fonctionnelle (sevrage des génisses ...)

Bilan des besoins minéraux

- Macro-minéraux satisfaisants ou excédentaires :
 - Potassium excédentaire dans herbes (pas dans le maïs)
 - ▶ Chlore
 - ▶ Phosphore possiblement proche des besoins (pas dans le maïs)
 - ► Calcium possiblement OK mais rare ! (si sol en santé, présence de légumineuses et récolte au stade)
- Macro-minéraux insuffisants dans les fourrages :
 - Systématiquement : Sodium / Magnésium /
 - Sur fortes productions : Calcium, Phosphore
 - Soufre variable
- Oligoéléments possiblement suffisants : Fer / Manganèse (Iode, Cobalt) / Vitamines dans fourrages verts
- Oligo-éléments systématiquement insuffisants :
 - Cuivre / Zinc / Sélénium

Bilan des besoins minéraux

- Les apports quotidiens d'un AMV et de sel sont indispensables (bonnes pratiques de l'éleveur)
- Besoins accrus en période hivernale (vitamines & oligo des fourrages)
- Persistance des besoins en sel toute l'année, + besoins oligo
 - Particularités des oligos : possibilités de stockage
- Cas particulier de la fin de gestation / préparation au vêlage
 - ► Une gestion particulière de la minéralisation en préparation au vêlage devrait être effectuée (BACA)

Bilan besoins minéraux

Cas particulier des oligoéléments et vitamines : recommandations mini /kgMS

	Limousine / BA (pour 10 kgMS)	Laitière (pour 18 kgMS)	Foin (/kgMS)
Sélénium	0,1-0,3 mg 1-3 mg		0,02 - 0,08
lode	0,5 mg 5 mg		0,1 - 0,3
Cuivre	10 mg	11 mg	6 mg
Zinc	50 mg 500 mg	55 mg	20-30
Cobalt	0,3 mg 3 mg	0,3 mg	0,07 - 0,1
Manganèse	50 mg 500 mg	50 mg	80 - 90

	Limousine / BA (pour 10 kgMS)	Laitière (pour 10-15 kgMS)	Foin (/kgMS)
Vitamine A	6 000 UI 60 000 UI	6000 - 8000 80 - 90000	0
Vitamine D	1 000 UI 10 000 UI	1500 - 2000 20 - 22 500	5 - 50
Vitamine E	15 UI (25 taries) 150 UI	45 - 100 675 - 1000	5 -10

■ CONCENTRATIONS SOUHAITABLES : pour 100 g/j

Na (%)	5 (ou sel)	Mn (ppm)	2 500
Mg (%)	5	Sélénium (ppm)	10
Co (ppm)	10	lode (ppm)	20
Cu (ppm)	1000	Vitamine A (UI / kg)	400 000
Zn (ppm)	4000	Vitamine D (UI / kg)	50 000

F. ENJALBERT, ENVT

ZOOM: préparation au vêlage: les enjeux

· La production du colostrum

- Très riche en protéines (Anticorps)
- 3 fois plus énergétique (lutte contre hypothermie)
- 2 à 5 fois plus riche en oligo-éléments

La qualité du vêlage

- Essentiellement : éviter l'hypocalcémie
- Apports énergétiques et azotés suffisants
- Apports satisfaisants en eau (quantité et qualité)!

La vitalité du veau : partir sur de bonnes bases

- Equilibre azote énergie de la mère pour veaux de conformation satisfaisante
- Eviter les carences (I, Se, Cu, Zn, Fe, Co)
 - (et les excès en fin de gestation Fer-?)

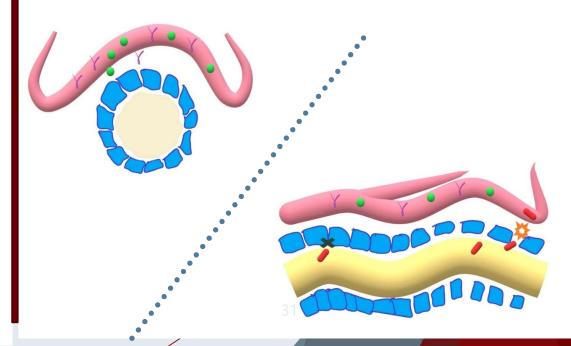
Composants (g/kg)	Colostrum	Lait
Mat. Sèche	238	117
Mat. Grasses	33	42
Protéines	170	32
(dont Anticorps - IgG)	50-100	2
Lactose	25	42
Oligo-éléments (mg/kg)	Cu: 0,16 Zn: 6 lode: 0,36	Cu: 0.028 Zn: 3 lode: 0,05

Particularités du colostrum et rôles d'activation

Apports d'anticorps maternels

Apports nutritifs

Activation du tube digestif


Mamelle de la mère

Insuffisance d'apports : irréversible

Manque anticorps

Déficit énergétique

Perméabilité / Insuffisance digestive

Evaluation du colostrum / Transfert d'immunité

Colostrum (réfractomètre)

Valeur lue (%Brix)	Taux IgG Colostrum	Valeur du Colostrum	En pratique
> 30%	> 100 g/L	BON	Colostrum OK 1è buvée
25 - 30 %	50 - 100 g/L	LIMITE	Attention à la quantité
18 - 25 %	30 - 50 g/L	MOYEN	Ajouter supp. Colostral en 1è buvée
< 18 %	< 30 g/L	MAUVAIS	Ne pas utiliser en 1è buvée

Sérum veau (réfractomètre)

Valeur lue (%Brix)	Taux IgG Sang (Protéines totales Sang)	Qualité du transfert	En pratique
> 9,2 %	> 15 g/L (> 65 g/L)	BON	Objectif : plus de 25% des veaux > 15g/L
8,3 à 9,2 %	10 à 15 g/L (55 - 65 g/L)	MOYEN	Mini 50 % des veaux > à 10g/L
< 18 %	< 10 g/L (55 g/L)	MAUVAIS	Mauvais transfert

Côté veau : conséquences

Insuffisance de prise colostrale :

Etiologie

- **Veau**: *cf* veaux mous : carences, vêlage difficile, infections (BVD, FCO, septicémie...)
- Vache:

Ration:

déficit énergétique (dim° quantité et IgG; hypoglycémie vache → hypoglycémie veau)

déficit protéique (dim° quantité et IgG)

déficit minéraux (hypocalcémie) → diminution quantité et débit

déficit Vit E / Se → diminution IgG

Mammites ; pertes lait - veaux voleurs ; hémolactation

- Eleveur : surveillance prise colostrale

Facteurs influençant la qualité du colostrum alimentation période sèche qualité du colostrum qualité du colostrum quantité pertes de lait avant vêlage F. ENJALBERT, ENVT

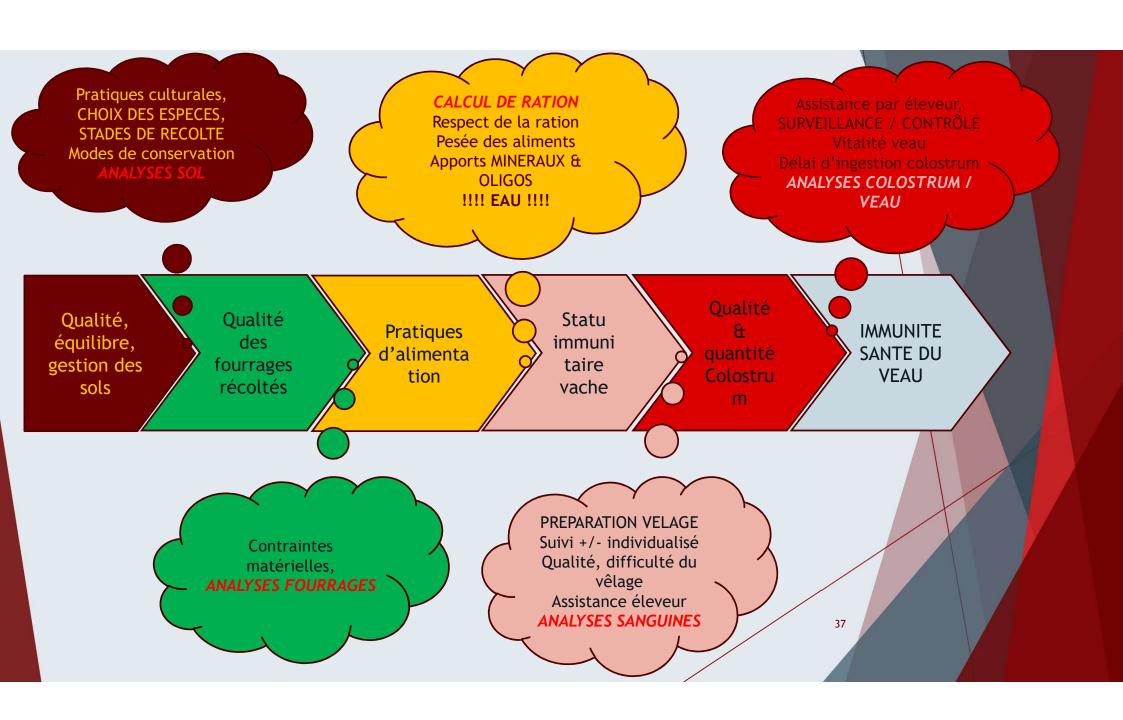
ZOOM: préparation au vêlage: besoins alimentaires des vaches

<u> </u>						
Besoins Totaux 9è mois	Blonde 650 kg	Limousine 600 kg	Tante 600 kg	Génisse 500 kg	Foin PP 1/2mont C2	Foin dactyle pluie<10j C2
Capacité ingestion	11 UEB (10-10,5 kgMS)	10,5 UEB (9,5-10 kgMS)	10,5 UEB (9,5-10 kgMS)	8 UEB (7-7,5 kgMS)	0,95 UEB/kgMS	1,32 UEB/kgMS
UFL	8,7 (0,83-0,87)	8,4 (0,84-0,88)	8,4 (0,84-0,88)	8,3 (1,11-1,18)	0,83 /kgMS	0,51 /kgMS
PDI	661 (66 g/kgMS)	637 (70 g/kgMS)	638 (67 g/kgMS)	668 (90 g/kgMS)	116 g/kgMS	50 g/kgMS
Ca	49 (4,9 g/kgMS)	46 (5 g/kgMS)	46 (4,8 g/kgMS)	35 (5 g/kgMS)	5,8 g/kgMS	3,5 g/kgMS
Phos	25 (2,5 g/kgMS)	24 (2,5 g/kgMS)	24 (2,5 g/kgMS)	18 (2,5 g/kgMS)	2,2 g/kgMS	2.4 g/kgMS
Mg	27 (2,7 g/kgMS)	26 (2,7 g/kgMS)	26 (2,7 g/kgMS)	20 (2,7 g/kgMS)	1,7 g/kgM\$	1,7 g/kgMS

A proscrire:

- Déficit azoté (veaux 'gras', retards, colostrum)
- Excès énergétique (veaux 'gras')
- Déficit
 énergétique
 sévère
- CarencesVitamines /Oligo
- Déficit magnésium & chlore 34

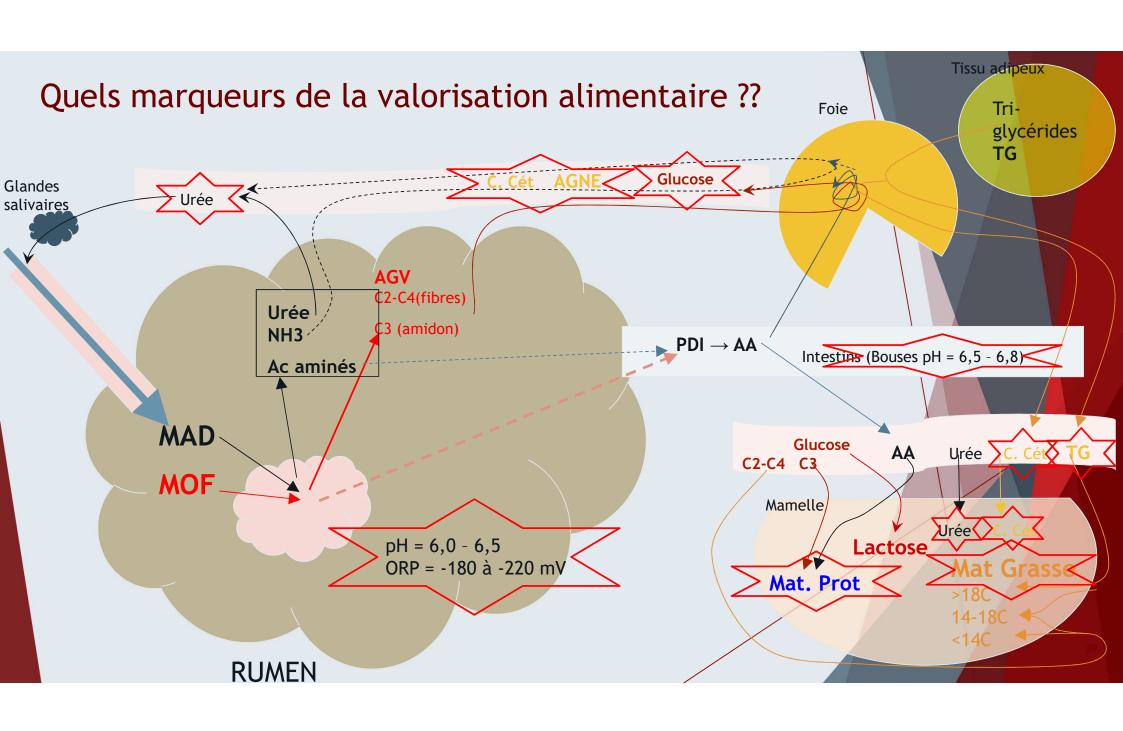
ZOOM: préparation au vêlage: gestion du BACA


- BACA = (Na + K) (Cl + S) → élevé sur rations herbe cf K largement excédentaire
- Risque d'hypocalcémie faible si ration acidogènes (métaboliquement), pauvres en Ca et K (stimulation parathormone)
- Acidose métabolique volontaire, sur une durée limitée, pour favoriser la mobilisation du calcium osseux
- pH urinaire normal: $7,5 8 (7,8 8,25) \rightarrow$ augmente si apports de K+ augmentent
 - Gestion du BACA avant vêlage: objectif pH 7 7,5
- Rations de base 'types': (pauvres en K et Ca)
 - Foin tardif + céréales + tourteau
 - Ensilage maïs + paille + tourteau
- Supplémentations
 - Oligoéléments Se, Cu, Zn, I + Vitamines A D3 E selon recommandations habituelles de fin de gestation
 - Sels anioniques : Chlorure de Magnésium (Sulfate de Magnésium), Chlorure de Calcium, (Sulfate d'ammonium)

3^{ème} partie: approche pratique

Outils de diagnostic, examens complémentaires utiles

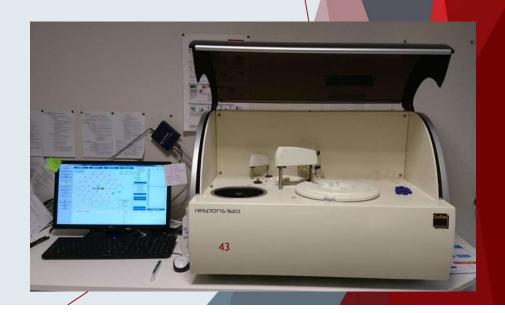
Les outils d'évaluation



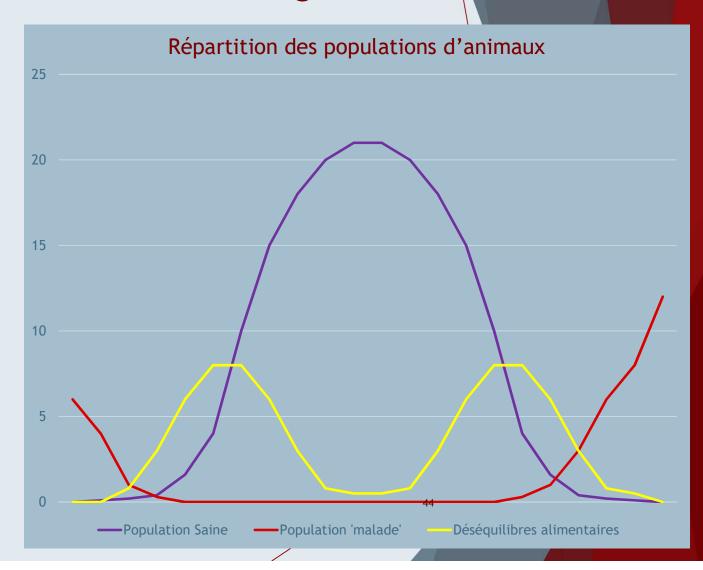
Les outils d'évaluation : mesures directes de pH

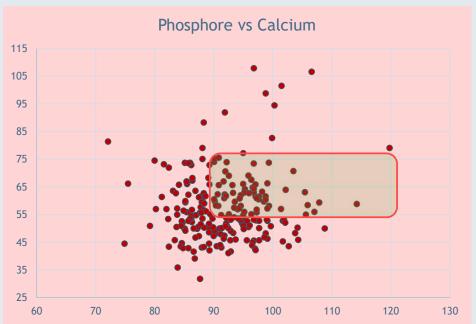
	Produit	Valeurs cibles	Diminution	Augmentation	Limites	Compléments
	Jus de rumen	6,0 - 6,5	Acidose subaiguë (< 6,0) Ou aiguë (<5,5)	Alcalose (excès MAD ou déficit MOF)	Collecte de jus de rumen, analyse directe	Microscope (flore) Redox (-180220 mV)
	Bouses	6,5 - 6,8	Acidose intestinale	Proliférations bactériennes, diarrhées infectieuses, 'putréfaction'	bactériennes, diarrhées infectieuses, Bouses fraîches	
7	Urines	7,8 - 8,25	Gestion BACA, acidose métab.	Excès Na, K, déficit Cl, S, alcalose métab.		Refractomètre, biochimie urinaire Na, K, Cl, Ca, P, Mg
	Fourrages	Silos < 4,5	RAS	Défaut de conservation, nature du fourrage		Matière sèche (risque augmente si fourrage humide)
	Lait	6,4 - 6,8 (colost. 6,1-6,4)	Acidose métabolique	Alcalose métabolique / Mammites	Mammites	Urines, Conductivité, Refract. Brix
	Eau	5,5 - 6,5			Pouvoir tampon faible	TDS, salinité, dureté multimètre

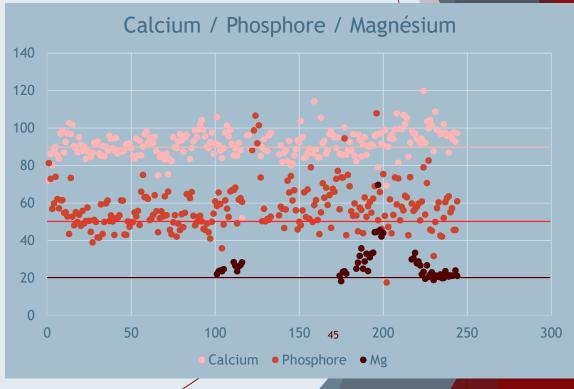
Les outils d'évaluation : réfractomètres urinaire ou Brix

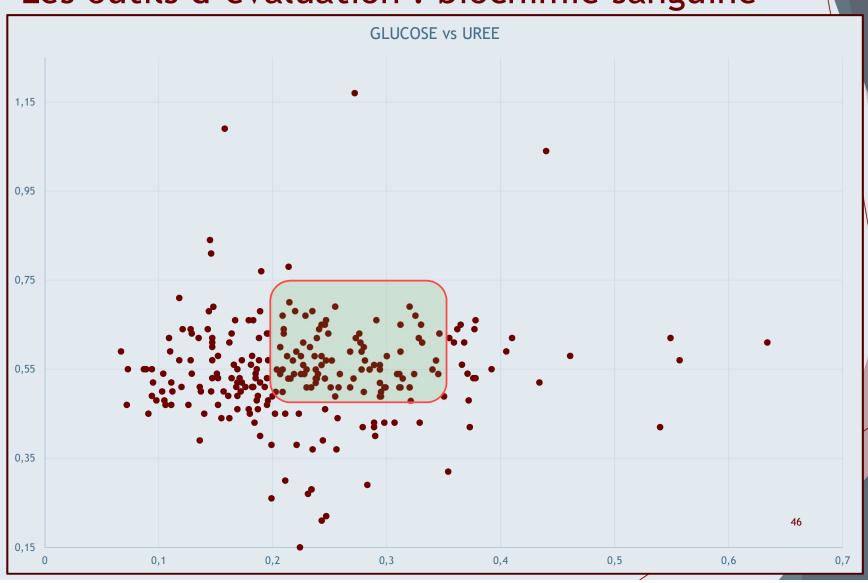

Produit	Valeurs cibles % Brix	Valeurs cibles densité ou prot.	Diminution	Augmentation	Compléments	
Colostrum	Bon > 30 % Mauvais < 25 %		Colostrum pauvre, supplémenter le veau	RAS, déshydratation ?	Sérum veau	
Lait	10 - 12 %	1.030 - 1.040	Dilution du lait : hyperhydratation, déficits alimentaires	Concentration du lait : déshydratation	Urines	
Urines	< 10 % > 2 %	1.020 - 1.035	hyperhydratation, (excès Na,K), insuffisance rénale, déficit MOF	Déshydratation, déficits Na,K, excès amidon (by-pass)	pH, biochimie urinaire Na, K, Cl, Ca, P, Mg, bioch sanguine urée glu B- OH	
Fourrages	Herbe à la fauche >18%brix		Faible taux de sucres	RAS : sucres augmentent	pH (pour ensilages : pH faible et sucres haut)	
Sang veau J2-J6 (sérum)	> 9,2 %	> 60 - 65 g/L	Mauvais transfert colostral si < 8,3% ou protéines 55g/L	IgG > 15g/L : bon transfert colostral	GGT > 300 & Albumine > 30g/L si bon transfert	
Sang vache (sérum)	65 - 75 g/L Déficit azoté chronique Déshydratation		Déshydratation	Urée, glucose, Albumine		

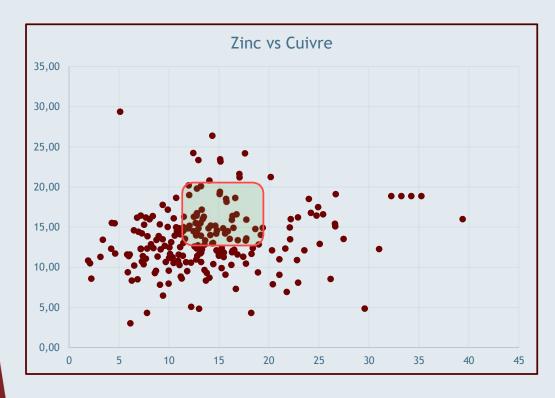
Les outils d'évaluation : Tamisage des bouses

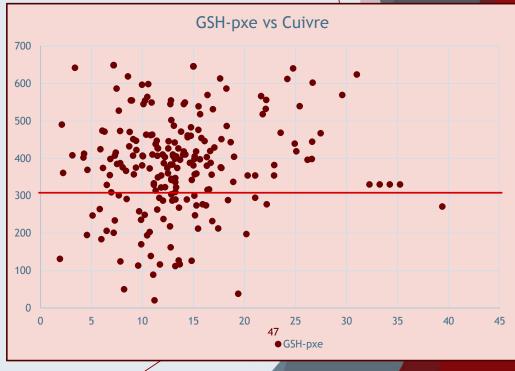



- Tamis Penn'State (maison)
 - ► Tamis supérieur : diamètre 5 mm
 - ► Tamis inférieur : diamètre 2 mm
 - Peser bouses avant, tamiser et rincer
 - ► Tamis supérieur : < 10 15 % de particules > 5mm (fonctionnement rumen)
 - ► Tamis inférieur : < 10 15 % de particules de 2-5 mm (fonctionnement intestin)
- Mise en évidence déséquilibres azote/énergie/fibres/sels


- ► Les classiques : Bêta-Hydroxy-Butyrate et Glycémie (au chevet des animaux)
- ▶ Pour approfondir : biochimie au cabinet (analyseur biochimie liquide Diasys Respons920)
 - Première intention :« Bilan alimentaire de troupeau » : 5 ou 10 animaux (PV : 10-15 € HT/B\(\frac{1}{2}\))
 - ▶ Apports énergétiques : Glucose, BHB, GGT, (AGNE)
 - ▶ Apports protéiques : Albumine, Protéines Totales, **Urée**
 - ► Apports minéraux : Calcium, Phosphore, (Magnésium)
 - ► Pour pousser : (au cabinet)
 - ► Cuivre, Zinc, Glutathion-péroxydase érythrocytaire
 - ► Na, K, Cl; AGNE
 - ▶ Biochimie urinaire : Na, K, Cl, Ca, P, Mg, pH
 - ► Fractions d'excrétion urinaire (problème : valeurs de réf)
 - ▶ Biochimie référée :
 - ▶ IgG, lode, T4, Vit B12, (hapto) ...




- Seuils / Valeurs de Référence
 - Diffèrent légèrement des VU 'pathologiques'
 - ► Animaux prélevés *a priori* sains
 - Interprétations plus difficiles pour analytes fortement régulés (minéraux)
- Mais variations visibles intra et inter troupeaux



Paramètre	Unité	VU	Animal 1	Animal 2	Animal 3	Animal 4	Animal 5	Animal 6	Animal 7	Moyenne
		taries	7854 Vel+2mois (tombée)	2403 Vel+6mois	2397 vel+5mois	9474 velée, maigre	0454 vel+4mois	1344 tarie	5580 tarie	
Calcium	mg/L	80 - 114	85,1	89,9	94,1	88,4	87,8	96,1	97,7	91,30
Phosphore	mg/L	50 - 71	73,7	50,4	57	50,3	51,5	51,1	52,8	55,26
Albumine	g/L	27 - 41	36,9	36	35,6	35,5	38,1	37,8	41	37,27
PROTEINES	g/L	60 - 80	77,1	66,2	66,5	71	63,7	67,3	62,9	67,81
UREE	g/L	0,20 - 0,35	0,118	0,095	0,136	0,103	0,089	0,073	0,129	0,11
GLUCOSE	g/L	0,45 - ,075	0,71	0,52	0,51	0,5	0,55	0,55	0,54	0,55
в ОН	mmol/L	< 0,4 - 0,6	0,39	0,56	0,54	0,51	0,52	0,88	0,58	0,57
AGNE	mmol/L	< 0,25	0,57					0,03	0,1	0,23

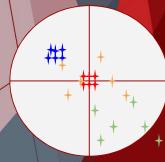
Commentaires: Déficit marqué d'apports protéiques; apports énergétiques limites (certainement en raison d'une sous-valorisation alimentaire par défaut d'azote soluble); Apports minéraux légèrement insuffisants sur les vaches en lactation.

Elevage	GAEC DE LA E	BOISSONNADE	02/02/2019								
Paramètre	Unité	VU	Animal 1	Animal 2	Animal 3	Animal 4	Animal 5	Animal 6	Animal 7	Animal 8	Moyenne
		taries	·								
			4877	9238	9210	8114	6547	veau 1	veau2	veau3	
Calcium	mg/L	80 - 114	86,3	86	85,7	100,3	85,7				88,80
Phosphore	mg/L	50 - 71	56,7	73,7	73,6	94,5	42,9				68,28
Magnésium	mg/L	19 - 32	21,2	18,4	23,4	23,7	22,4				
GGT	U/L	< 32	28	28	23,2	34,8	25,2				
Albumine	g/L	27 - 41	37,9	35,7	38,3	36,7	42,8	42,3	36,6	48,7	38,28
PROTEINES	g/L	60 - 80	70,8	76,3	71,7	67,3	76,4	65	60,4	75,8	72,50
UREE	g/L	0,20 - 0,35	0,309	0,28	0,277	0,238	0,281				0,28
GLUCOSE	g/L	0,45 - ,075	0,54	0,5	0,61	0,52	0,57	0,81			0,55
в он	mmol/L	< 0,4	0,41	0,45	0,49	0,37	0,36				0,42
Cuivre	μmol/L	14 - 18	14,66	6,5	10,23	11,45	4,62	30,83	12,24	18,26	9,492
Zinc	μmol/L	15 - 18	15,19	14,61	13,12	13,02	11,72	12,78	17,31	47,48	13,532
GSH-pxe	UI/gHb	150 - 600	388	206	249	263	369	734	523	186	295

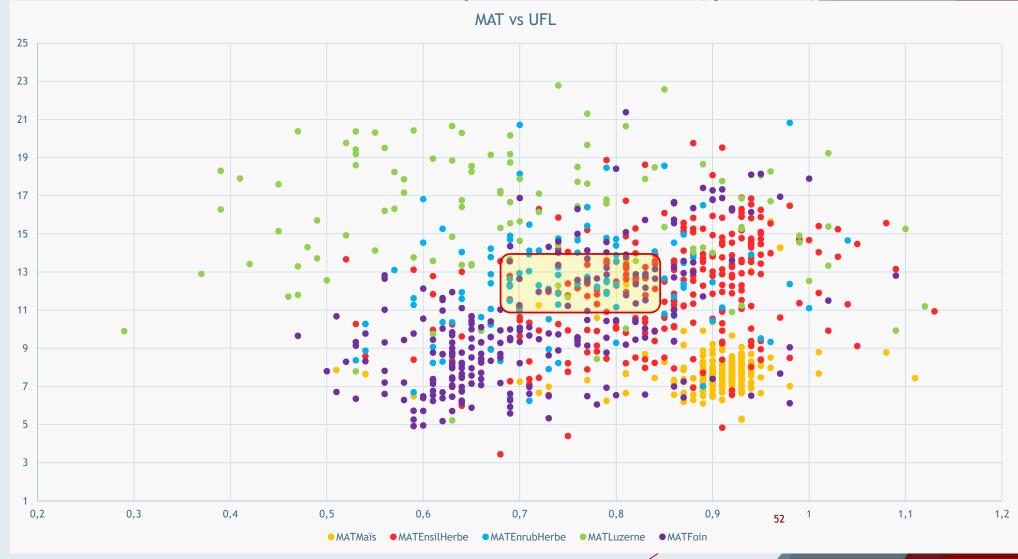
<u>Commentaires</u>: Apports énergétiques et protéiques globalement satisfaisants, GGT augmentées malgré équilibre énergétique correct : suspecter souffrance hépatique (grande douve ?) ; déficit modéré d'apports en Calcium; Statut oligoéléments : Carence marquée en Cuivre, modérée en Zinc ; statut sélénium limite (objectif : 300-450) : <u>apports en oligoéléments et minéraux insuffisants (notament Calcium, cuivre, zinc)</u>. Transferts colostraux acceptables mais légère carence oligo sur les veaux.

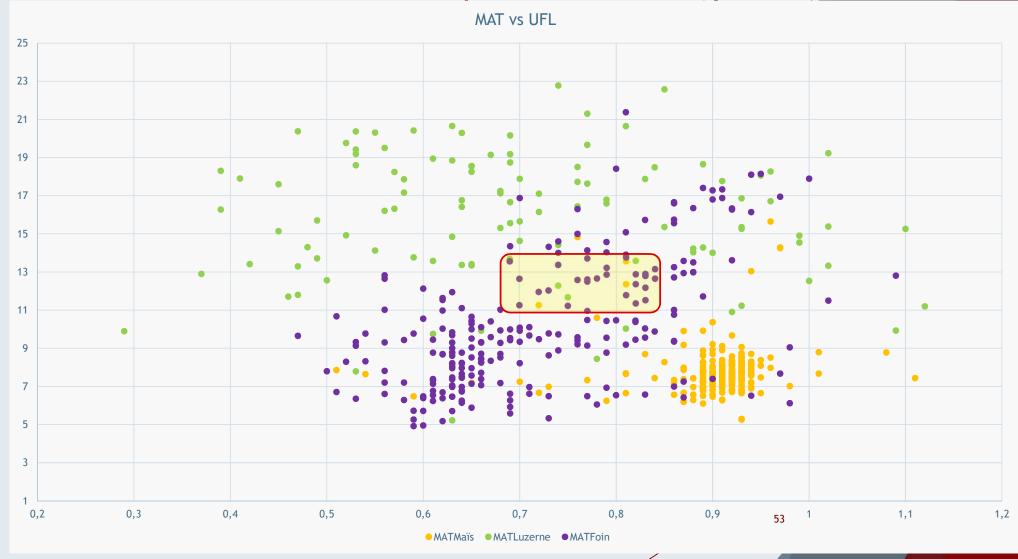
Conduite à tenir : Apporter quotidiennement un AMV (type 5/25/5 - 100-150g/jour) + cures d'oligoéléments : VETCURE OLIGO (<2€ par vache) : 1 cure 50g/j sur 5j tous les 3 mois. Si historique grande douve : traitement recommandé sur le troupeau, sinon faire coproscopies de contrôle. Veaux : temporairement apporter ipaligo à la naissance le temps de remonter le statut des vaches

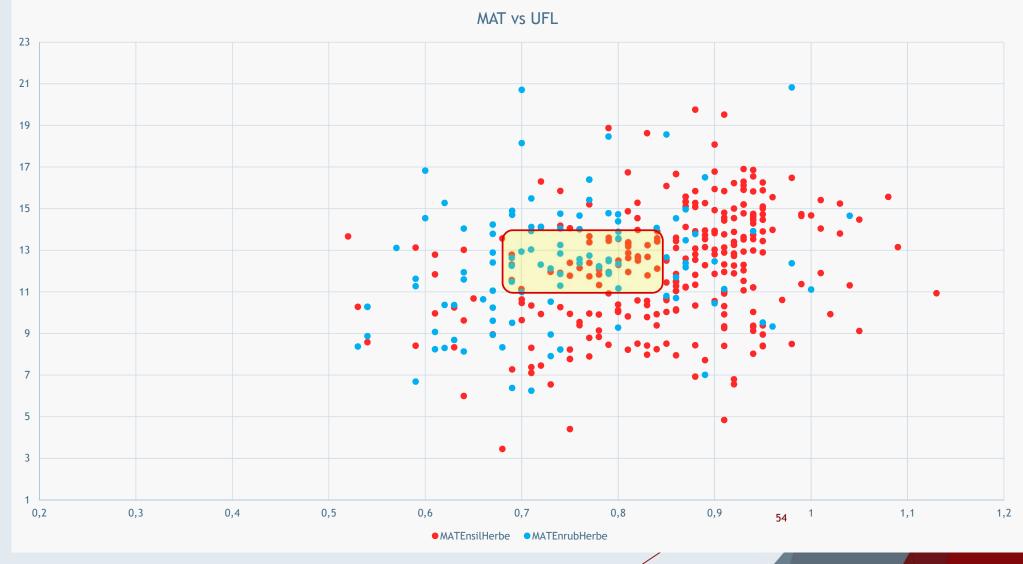
Les outils d'évaluation : oligo-éléments


- ► Analyses sur fourrages : interactions (Cu/S/Mo...), souvent partielles, mais peuvent être utiles
- Analyses sur poils :
 - Contaminations exogènes / MS du poil / difficultés de corrélation interlabos / poil vieux vs jeune
 - Mesure évolution possible
- ► Analyses sur tissus : LE PLUS FIABLE (mais problème des prélèvements et coût +++!)
- Analyses sanguines :
 - Cuivre: 14 18 μmol/L / carence si < 12μmol/L
 - ► Céruléoplasmine (+ spécifique *cf* interactions)
 - SuperOxydeDismutase : carence > 160j
 - Zinc: 15 18 μmol/L /carence si < 12 μmol/L (foie < 300-600μmol/kgMS)</p>
 - Sélénium : > 0,25-0,38 μmol/L / sélénium ion intéressant pour suspicion intoxications (plateau pour enzymes)
 - ▶ Glutathion Péroxydase Erythrocytaire: 150/300 600 Ul/gHgb
 - lode: IIP en gestation (apports récents) / T4 (apports moyen termes, chute début lactation)

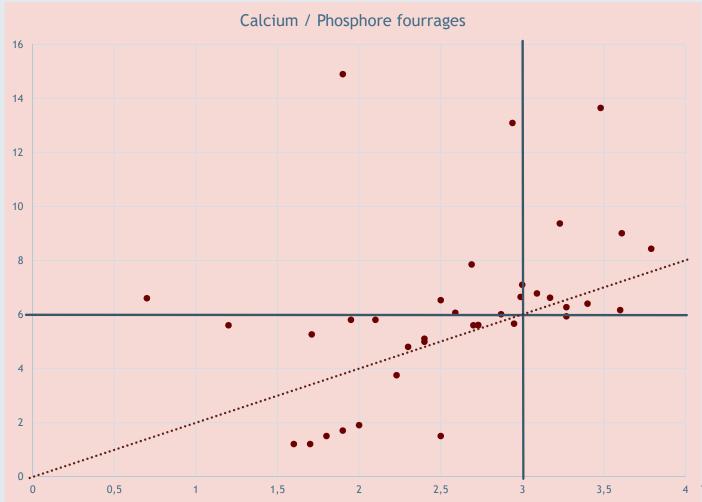
- Première intention :
 - Valeurs alimentaires (35 € HT / Forfait annuel 120 € HT)
 - MS, MAT, Cendres, ADF, NDF, UFL, PDI, UEL, CB, Digestibilité
 - ► Représentativité de l'échantillon
 - ▶ Exhaustivité


Pour approfondir :

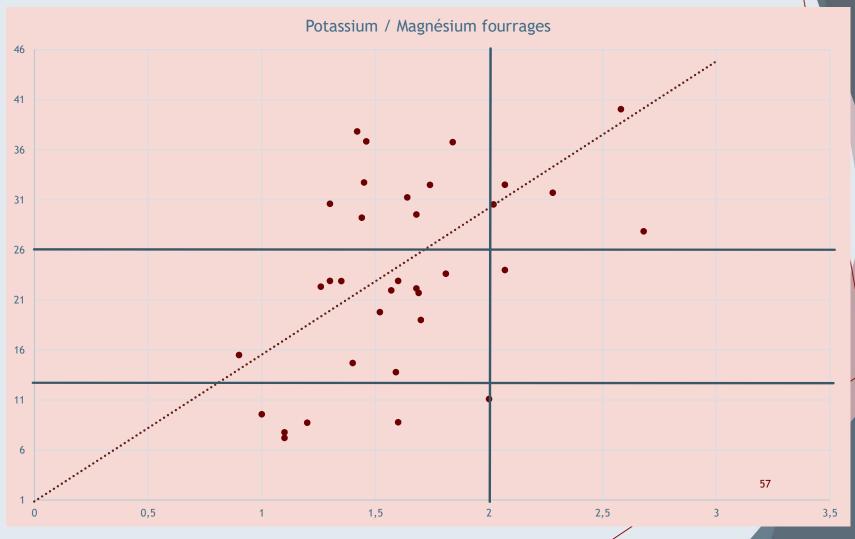

- ► Analyses minérales (LANO : IR + Ca, P, Mg, Na, K, Cu, Zn, Mn, Fe = environ 50 € HT !!)
- ► Sucres, Chlore (+ 50 € HT)
- ▶ Paramètres de conservation
- Oligoéléments supplémentaires



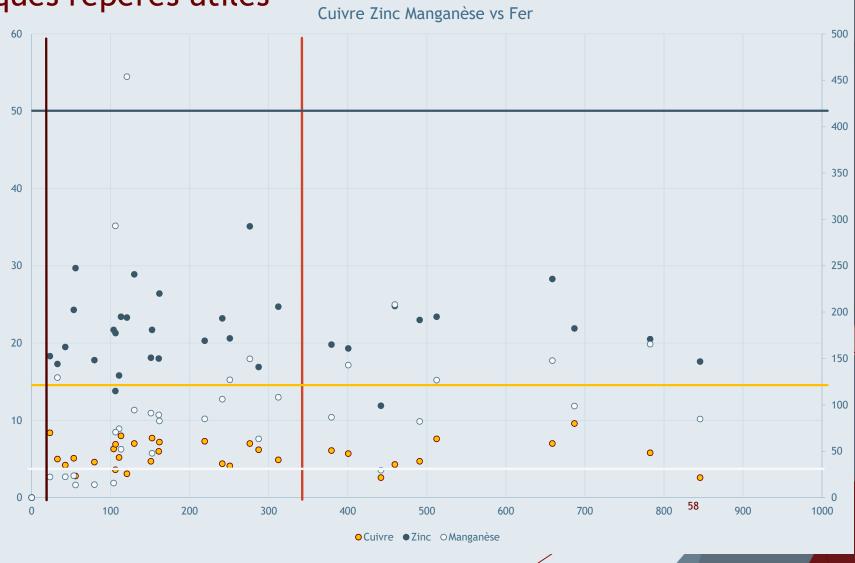
Précision et répétabilité
Précision non répétable
Imprécision et répétabilité
Imprécision non répétable



Quelques repères utiles


- Apports énergétiques et azotés
 - ► UFL = 0,7 0,8 / kgMS; Digestibilité >72%; Ensilages; 65%
 - ► MAT = 11 13 % de la MS
 - PDI = 70 80 g/kgMS; PDIE ≈ PDIN; PDI/UFL = 100 → équilibre azote/énergie
 - ► Fin gestation : excès PDI
 - ► Repro: excès UFL
- ▶ Apports Minéraux : →
- Sucres: mini 5-7 %MS
 - ► Ensilages : maïs très faible, herbe très variable
- ► Fer / Aluminium; rapport Ca/P: marqueurs dysfonctionnement du sol

	Recommandations Herbe	Recommandations Maïs	Besoins Taries	Besoins Lactation
Phosphore	3-3,5 g/kgMS	> 2,0 g/kgMS	3 - 3,5	3 - 3,5
Calcium	6-9 g/kgMS	> 2,0 g/kgMS	6,0 - 7,0	6,0 - 6,5
Magnésium	> 2,5 g/kgMS	> 1,5 g/kgMS	2,5 - 3,5	2 - 2,5
Potassium	> 25 g/kgMS	> 10 g/kgMS	< 13	13 - 15
Sodium	g/kgMS	g/kgMS	< 1,5	1,5 - 2
Chlore	g/kgMS	g/kgMS	4-6	4-6
Soufre	3-4g/kgMS	1-4g/kgMS	2,0 - 2,5	2
Cuivre	8 mg/kgMS	8 mg/kgMS	1	5
Zinc	30 mg/kgMS	30 mg/kgMS	5	60
Manganèse	106 mg/kgMS	106 mg/kgMS	3	30
Fer	< 350 mg/kgMS	< 350 mg/kgMS	1	5
Aluminium	<0,23 mg/kgMS	<0,23 mg/kgMS		
K/Mg	< 10 - 15	55		
Ca/P	>2			


Les outils d'évaluation : Analyses de Fourrages Quelques repères utiles

Les outils d'évaluation : Analyses de Fourrages Quelques repères utiles

Les outils d'évaluation : Analyses de Fourrages Quelques repères utiles

Conclusions analyses fourrages

Valeurs alimentaires :

- ► Maïs homogènes, mais excès énergie et déficit azote
- ► Foins : très variables (récolte), mais équilibre azote/énergie
- ► Enrubanné / Ensilages herbe : très très variables (ensilages énergie > azote ; enrubannés plus équilibrés)
- ▶ → Difficile de se passer de l'analyse pour établir une ration théorique!

Valeurs minérales

- ► Ca & P souvent déficitaires, Ca/P > 2 si stade OK et sol en santé
- ► Mg, Na toujours déficitaires ; K/Mg > 15 → interactions
- ▶ Oligos : Cuivre et zinc environ 50% des besoins
- Oligos: Fer et Mn largement excédentaires; si Fer > 30 mg/kgMS: ATTENTION SOL

Conclusions analyses fourrages

- ▶ Plans de rationnement :
 - ► Multiples intervenants / conseils / vente
 - Changements difficiles des habitudes !
 - ► <u>Simplification des rations (1 fourrage) et Argument 'STOCK' → les besoins physiologiques passent au second plan</u>
 - ► Expérience personnelle sur rations 'papier':
 - ▶ Beaucoup de temps et d'énergie, conseil pas toujours suivi,
 - ► Approche 'trop théorique' pour éleveurs surtout allaitants
- ► Examens complémentaires en alim :
 - ► Ne pas proposer : PRESCRIRE
 - Canine : bilan bioch préanesthésique, gériatrique ... et pourquoi pas de bilan diagnostique en BV (coût alim 1 BV = mini 1 € HT/j)

CONCLUSION

- Portes d'entrée alim :
 - ➤ Toutes les pathologies en lien avec alim : vêlage/colostrum, néonat, croissance, cellules/mammites/boiteries, TB/TP/Urée
 - Observation animaux + Bilans biochimiques (+ beaucoup, beaucoup de questions)
 - Analyses fourrages
 - ► (((Éventuellement ration)))
 - Les maladies rares sont rares' → En alim, souvent, les règles de base sont oubliées! (fourrages variés, ABREUVEMENT, sel, préparation au vêlage...)
 - ▶ DEMARCHE DIAGNOSTIQUE : observation, hypothèses, examens complémentaires, diagnostic, recommandations.

